
Lecture 07: Expected Max-Load & Poisson
Approximation Theorem
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Recall: Upper Bound

Let us quickly recall the strategy that was employed to
upper-bound the expected max-load in the previous lecture.

If there exists a value `∗ such that P [Lmax > `∗] 6 1/n, then
we showed that E [Lmax] 6 `∗.
So, our task reduces to finding a meaningful value of `∗

Next, using the union bound, we reduced the task to finding `∗

such that P
[
Lj

]
6 1/n2

Finally, we demonstrated that there exists
`∗ = Θ(log n/ log log n) that suffices for our purpose
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Overview: Today’s Plan

Today’s plan is as follows
If there exists `∗∗ such that P [Lmax < `∗∗] 6 1/n then we
shall show that E [Lmax] > `∗∗/2
Now, we need to find a meaningful value of `∗∗

This objective shall be achieved via a powerful technical tool,
namely, the Poisson Approximation Theorem. We shall not
prove this theorem. However, we shall learn how to use this
result for our objective. In the homework, we shall see several
complex applications of this result
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Lower Bound

Let us take a small detour. We shall introduce a very powerful
technical tool called the “Poisson Approximation Theorem”
and then revisit this problem
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Poisson Distribution I

Let us start by calculating the probability that the bin j receives
exactly ` balls

Suppose we are throwing m balls into n bins

There are

(
m
`

)
ways to choose the set of ` balls that fall into

the bin j

Given this fixed set of balls, the probability that these ` balls
fall into bin j , and the remaining (m − `) balls do not fall into
bin j is given by the following expression

1
n`

(
1− 1

n

)m−`
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Poisson Distribution II

So, we have the following result

P
[
Lj = `

]
=

(
m
`

)
1
n`

(
1− 1

n

)m−`
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Poisson Distribution III

Rough Calculation below.
Let µ = m/n, the expected load of a bin

Let us now perform a rough calculation

P
[
Lj = `

]
=

(
m
`

)
1
n`

(
1− 1

n

)m−`

≈ m`

`!
· 1
n`

(
1− 1

n

)m (
1− 1

n

)−`
=

m`

`!
· 1

(n − 1)`

(
1− 1

n

)m

≈ exp(−µ)
µ`

`!
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Poisson Distribution IV

Poisson Distribution.

The radom variable X over Ω = {0, 1, . . . } is a Poisson
distribution with mean µ if the following condition is satisfied
for all i ∈ Ω

P [X = i ] = exp(−µ)
µ`

`!

So, the load Lj is (roughly) distributed like a Poisson
distribution with mean µ = m/n
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Poisson Approximation Theorem I

Reality.
We throw m balls into n bins uniformly and independently at
random. Let (L1,L2, . . . ,Ln) be the joint distribution of the
loads of the bins

Poisson Approximation.
Let (X(1),X(2), . . . ,X(n)) be the distribution corresponding to
n independent Poisson distributions with mean µ

Objective.
We can approximate the behavior of the function f in the
reality using its behavior in the Poisson approximation world.
That is, we approximate the random variable f (L1, . . . ,Ln)
using the random variable f (X(1), . . . ,X(n)).

Max-Load



Poisson Approximation Theorem II
We state the following theorem without proof.

Theorem (Poisson Approximation)

If f is “well-behaved” (for some positive function c(m))

E
[
f (L1, . . . ,Ln)

]
6 c(m)E

[
f (X(1), . . . ,X(n))

]
Refer to the book “PRobability and Computing: Randomized
Algorithms and Probability Analysis,” by Michael Mitzenmacher
and Eli Upfal for a full proof.

For example, if f is a non-negative and monotonically increasing
function in m (the number of balls) then we have c(m) = 2

If f is non-negative function then c(m) = e
√
m
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Revisiting “Lower Bounding Max-Load” I

Suppose we show that

P
[
Lmax < `∗∗

]
6

1
n

for as large a value of `∗∗ as possible
Then, we can do the following calculation

E [Lmax] =
∑
i>1

i · P [Lmax = i ]

>
∑
i>`∗∗

i · P [Lmax = i ]

>
∑
i>`∗∗

`∗∗ · P [Lmax = i ]

= `∗∗P
[
Lmax > `∗∗

]
> `∗∗

(
1− 1

n

)
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Revisiting “Lower Bounding Max-Load” II

To show that P [Lmax < `∗∗] 6 1/n, let us define a random
variable 1{Lmax<`∗∗}

We can equivalently write this random variable as a function
f (L1, . . . ,Ln)

Consider n independent Poisson distribution (X(1), . . . ,X(n))
with mean µ = m/n = 1

By Poisson approximation theorem, the expectation of this
function in the real world is

e
√
nE
[
f (X(1), . . . ,X(n))

]
So, it shall suffice to show that(

P
[
X < `∗∗

])n
6

1
en3/2 = exp

(
−1− 3

2
log n

)
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Revisiting “Lower Bounding Max-Load” III

Which, in turn, is equivalent to showing that

P
[
X < `∗∗

]
6 exp

(
−
1 + 3

2 log n

n

)

To prove the above statement, it suffices to prove the
following statement

P
[
X < `∗∗

]
6 1−

(
1 + 3

2 log n

n

)
,

because 1− x 6 exp(−x)

To find `∗∗ such that this bound holds, note the following
P [X < `∗∗] = 1− P [X > `∗∗] 6 1− P [X = `∗∗] = 1− exp(−1)

(`∗∗)!

Now, we solve for `∗∗! = n
1+ 3

2 log n
, which gives `∗∗ > d log n

log log n ,
for some positive constant d
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Coupon Collector Problem

Problem Statement. What is the number m of balls that
one should throw such that each bin receives at least one ball?
This problem is referred to as the Coupon Collector’s Problem.
Basically, how many cereal boxes to buy so that you get all the
toys?
Think: How to solve this problem using the Poisson
approximation theorem. The answer is m ≈ n log n

How many balls should one throw to ensure that there are at
least r balls in each bin?
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